
5eAUTOMATED ROUTE FINDER FOR MULTIPLE TAMK COLWU6S(U) /
ARMY ENGINEER TOPOGRAPHIC LABS FORT BEEVOIR VA
J R BENTON SEP 87 ETL-8480

ULASSIFIED F/C 15 U6

hL AEEEEllil
EEIIEEEIIEEEEE
EllhEEEEIhllllE

1% i , ,

a.

-]~

4. I

L IIIII.n

1111 I iiu

%.

.?2
-. :.

;.4..

ETL-0480

AD-A 186 920
Automated route finder for
multiple tank columns

John R. Benton

j .

September 1987

.LF.CTE

N,' APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

US ARMY CORPS OF ENGINEERS
ENGINEER TOPOGRAPHIC LABORAFORIES
FORT BELVOIR, VIRGINIA 22060-5546

04

rsrvr e~ ert w' o,) r~ on e r ne 'te

1) t e I rn it t te Ir In t

Tha rtJ~g Ithsr re n b be nst as rn ,i ,,f-i,-cri:al
-1r I e lit I th A rr,.' ~ i t i n n I ~eh A Ie s i iieI byv o r

r I rz tA .1 "me r,.

7h a - I . r et r T. oft I, e ir Mmf.. e r R Ia IV A Iv it)I e
d)p s not T1 i r te ft f I s~ e remen or aprv 1 of theq

wie of SuOh produ

104

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

ETL-0480

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
U.S. Army Engineer (If applicable)

Topographic LaboraLories

6c ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Fort Belvoir, VA 22060-5546

Ba NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc ADDRESS (City, State, and ZIPCode) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61101 A91 D 01
11 TITLE (Include Security Classification)

Automated Route Finder for Multiple Tank Columns

12 PERSONAL AUTHOR(S) John R. Bnton

13a TYPE OF REPORT j 3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) iS PAGE COUNT
* Technical FROM _____TO __ S~ieptee1987

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The Automated Route Finder for Multiple Tank Columns computes multiple

non-competing paths for columns of tanks. The network of available paths is

represented by a graph-theoretic structure. Each arc of the graph has an
associated cost which represents the time required to traverse the path

corresponding to the arc. A best-first algorithm is used to search the graph

in order to find the specified number of optimum paths. The algorithm was

implemented on the Symbolics LISP Machine with a color monitor used to display
the graph as it is explored, Sample outputs of route finding are included
with an analysis of the results. Future enhanceinents for the system are

outlined.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

C-IIJNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFlED

22a Nr/%ME OF RESPONSIBLE INDIVID(JAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

f:. Jaf S Book, (202) 355-3039 ETL-IM-T

DD FORM 1473, 84 MAR 83 APR ed,tion may be used untd exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editons arp obsolete

SLINCLASS I F I E)

%.' %.. .," .<?Z.>? / "-" " "",%

PREFACE

This study was conducted under DA project 4A161101A91D, work unit 01, "Automated
Route Finder for Multiple Tank Columns."

The work was done during fiscal year 1985 under the supervision of Anne Werkheiser,
Team Leader, Center for Artificial Intelligence, and Robert D. Leighty, Director, Research Institute.

Col Alan L. Laubscher, CE is Commander and Director, and Mr. Walter E. Boge is Techn-
ical Director of the U.S. Army Engineer Topographic Laboratories during the report preparation.

Y'p...

--

4
b

550

TABLE OF CONTENTS

I. NTRODUCTION.. 3

I. ANALYSIS ... 4

A. Multiple Route Finder Program... 6

13. Graph Generation Using Mouse... 11

C. Line and Curve Drawing Functions .. 12

D. Screen Control Functions.. 12

E. Special Macros.. 12

HI. CURRENT STATUS .. 14

V. FUTURE ENIhANCEM1ENTS.. 19

V. REFERENCES... 20

*l. APPENDLKES .. 21

A. Multiple Route Finder Program ... 22

13. Graph Generation Using Mouse... 35

C. Screen Control Functions.. 39

D. Line- and Curve-Drawing Functions.. 44

E. Special Macros.. 47

F. Discussion of Avenues of Approach and Obstacles............................ . 49

Accession For

NTIS GRA&I
DTIC TAB
Unannounced Q

U-l

5- By

Distributio n/
Availability Codes

A'iland/or

Di0st Special

02 14 0
87 to

i'Q k-

LIST OF ILLUSTRATIONS

Figure 1. Examples of line-thinning algorithm used to generate stick figures 5

Figure 2. (a) Graph representation of routes and (b) Corresponding coincidence matrix 8

Figure 3. Search tree with start node of I and goal node of 5 for graph of Figure 2 9

Figure 4. List of global variables used in m ultiple route finder .. 10

Figure 5 Flow chart of principal functions in the multiple route finder program 11

Figure 6. Sample output of multiple route finder program 15

b2

V.

I. INTRODUCTION
Anyone who has struggled to find the most direct a route between two locations oni a CitN

map where there is no single road or even just two or three roads directly connecting Ihet%,t

locations is familiar with the general problem of plaming an opti mum path through a compli-
cated tangle of roads. In planning a route through a city one must consider not only distact,.
but also the number of traffic lights and quantity of traffic at a given time of day. A bat tlefield
commander may not have to worry about traffic lights when planning a route, but he niust ('o1n-
sider positions of enemy and friendly forces, lines of sight from enemy observation points, av
lability of places of concealment from aerial observation, choke points where his frces
could be ambushed, and weather conditions that could affect the mobility of his vehicles.

.Currently, there is no capability of autoinated route finding available for operational use
in the Arnly. Such a capability would be particularly useful in situations that require a rapid rear-
tion to counter an enemy threat or changing conditions One example of an Army applicat ion
where this capability would be valuable is the requirement that a friendly force.s commander be
able to predict the eneinys .)bjective and the routes tile enemy will use to advance tovard their
objective. Military doctrine often calls for offensive forces to advance in three separate columns.
The defending forces must use their knowledge of the doctrine afi(l tactics of t lie opposing force as
well as knowledge of the terrain to anticipate and possibly to counteract tlie movement of their
enemy. The entire hItelligence Preparation of the Battletield (1113) process is now done manually.
and depending on the size of the area, requires a-s nuch as two or three mont his to complete. il
order to have the capability to develop an IP1 in response to enemy actions it will be necessary to
automate most of the required effort. One of the tasks that could be perforied by the computer
system would be to predict enemy movements. As merntioned above, frequently tile military plans
will involve three separate columns. The computer should therefore compute three optimum in on-
competing paths as well as suboptiniun alternatives. The three routes nmust be noncompetitive
(i.e. have no road segments in common) since traffic jams w~ould be engendered if two separate
columns had to share the same road.

-, To address these problems, a project was initiated to develop a system capable of
automatically generating optimized routes for multiple tank columns. Input to tle current
program is a graph-theoretic representation of ilie road network. A pictorial represen at ion is
displayed on a television monitor. Optimum paths are conluted by usiNg tile re(uired traver-
sal time for a road as the cost of traver.,iig tile road. As tile patlis are computed they are
displayed as a color overlay on the monitor and also are printed as an or, ered list of graph
nlodes.

'"" 3

i°

-'.

n~~~~~~~~~~~ ~~~~-mu"'m I IIiIH
'u

i
'

mlnuNum orn~ ,m

W, 4 q%%
4A Z!

1I. ANALYSIS

All of the information required to determine the paths to an objective may be present in a
cross-country mobility map. However, this does not mean that it will be easy for even a trained
analyst to quickly determine multiple optimum routes. Since the allowable velocity along a
selected path can vary according to the type of terrain encountered, the only way that the traver-
sal time can be computed is to integrate the velocity along the path.

In developing a computer model for route planning over a large area, a prime concern
most be to avoid what is known as "combinatorial explosion". For example, a four-levels-deep

full binary tree has 31 nodes while a ten-levels-deep full binary tree has over two million branch
points or nodes. If the map data consist of a grid at ten meter spacings, an unrestricted search
algorithm would generate a search tree with literally millions of nodes* in order to plan a route
for a distance of 100 meters. Obviously, no one would actually use such a simple-mindd tech-
nique, but when route planning over a distance of several kilometers is required, the almost inev-
itable result of planning a route at the pixel level is combinatorial explosion. An alterna-
tive approach is to reduce the size of the search space before the planning algorithm is invoked.

There are several methods that can be used to reduce the search space. However, they can
be divided into two classes: (1) preprocessing methods and (2) methods for searching more intelli-
gently. The preprocessing methods are concerned with the data representation of a mobility inmap.
The maps are normally stored in one of two forms in a computer, raster and vector. The raster is
simply the ordered rows of pixels mentioned above. The vector representation makes use of the
fact that typically a large area or the map has identical mobility factors. This area can be at least

* approximately bounded by a polygon of contiguous vectors. The area, or "region" as it is gen-
erally called, can then be represented in the computer by a list of the vectors of which the polygon
is composed. At the pixel level, each pixel is surrounded by either four or eight neighboring pixels,
depending on the definition of neighbor that is used. Thus from a given node the number of

neighbors and the distance to each neighbor are always constant. In contrast, with a vector
representation, the number of neighbors will vary, and the distance to each neighbor is no longer
well defined since the shape of the the regions may be irregular. A method intermediate in storage
efficiency uses a quadtree representation' in which the map of a square area is divided into four

quadrants. Each quadrant is subdivided if the quadrant is not completely contained within a uni-
form region. The process terminates when no regions remain to be subdivided. The distance
from the center of any quadrant to the center of an adjacent quadrant (which may have been
subdivided a different number of times and therefore is a different size) is easily computed.

There is one additional representation method which can result in a large reduction in
storage requirements. Any one of a number of line-thinning algorithms can be applied to the
mobility map in order to generate a skeletal structure that will correspond to a line drawn along

the center of mobility corridors or avenues of approach.t Branches in the skeletal structure are
" , caused by obstacles that force a traveler to fork either to the left or to the right in order to go

around the obstacle. Since the line-thinning algorithms require a binary image, the first step is
* to generate a mobility map containing only two levels of mobility: go or no-go. An illustra-

tion of thi, technique is shown in figure 1. 2 The three shaded figures represent regions, with the
corresponding skeletons indicated by the superimposed bold characters. These skeletons can also
be considered to be graph-theoretic structures to which graph theory can be applied. A tree-
tei,'rChing algorithm can be used to find the optimum paths through the graph.

e i r,,.] ilvlate a [,wiTt along a path whor th~re is a rhoie in vhi,'h dir-,tion t(, pr,'e-1

II > ':,. "T h, U j ,tr,, and FP .late,1 lli'rarhi al Data S tr s.".('.I (omputi ng .Surtys 1I tn 1 t)
% "". r'n fi: F f, r a ,Ii.usion f avnus of ai,.roa-hi a.l obsta'les

lh- /h'n T a 5nI S . U Y "A Fa.t Paralk,, Algorithm rF,,r Thrining T)igital Patt('rns," ('omm of th, ACM

4
.rpZ

" ' - - - - - " " - - - -" ' ' ." " ' " - " " " - -.. ;*:.1,- . -... :.-. . . -,./ ;.,... . 7. . .;..*> 5 . '

ft.~ ~ ft ft ft .t t t ft ft

.............

...........

ft.ft.

....................

.t .t . ft...

ft f

..

.

.....................

ft.tf ft t ftt t .

• , o................
* * °

...

ft rf f t f t

.......

........
f t f. .t.t ..t..

.....

. . . .t t .*o .- -
t.l .1

.,° . . . °

.° °

. . . . •

.o

%

.
.

. .

ftf
..

~~~~~. . ... .... .. o ... ...... .

. . . t. . . . .. . . . .. . . . . ° , t . . .• . . . . .

N ".
ft ft .. ftft.

• te

.. . .. . .. . .. .

.f. . .. . . . .... o * .

ft... . . .. . .. e

.. . .. . . ...

Figure 1. Examples or Line Thinning Algorithm Used to Generate Stick Figures

ft$

... . *~ *. .. ~ .. :.,; .;r ~ d X~f~ r~r\ft y....... 
t.. . ",.



T'~ jrair11"11 mitlrim-i :klmiv a i-liu i for kise on til. project. Other grouips are
ri-irreritl Iv wlukirg ii tilt pirridl'ii o)f ri-lining t rafficalrifity m af i to grahs Thrfoeefr was

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ it ci-i rr 1o, .rirtig iil h rts i-t rrtnfrtdeeoping a grp-gnrat ion
,lot~to IIIjfll HI'll 'I loowing se'i-t~l der~Iscriibe tilhe softNware levefIopiti ~Ii 5iport of This project.

Y[a- riI i.siiti- to) liive a %% r-Ikinig kiiow.leige- of t If(, LISP progranrining languiage.

A. Multiple Route Finder (MIRF) Program

'Ilic 1111p1t to till, progiarli11 Is a graph repri-siriion of hel( skeletoni of a nmobility map pas
In t loe- -r- ioti> -oriou 'Hlt- user ente-rs tille desired start arnd destinaition p~oinits

ildO -iIf -Ired imiruir of routes conniectig t Ill, r V. poinlts. 'Iule progxril com1putes r he Paths
tlld prruin, the complited roultes, oil tin- 11iotuitor.

Imtidl% llgt-ylu is repres,-inted hy a colii-li-i- irat rix. %%wil cost ;asociated withi each
arc" oif tille glaph 'rhe (1)),11) r'orponerit of a colicldcitwe rulatrix is the cost to I ra,,cise The path
lwi V.-n tilt ITT arid it coin-s If t icr, is rio path iiot,%c en :1r1V rNo giveni nodes, filie cost is
P~pr-srtt el a: - I. (The' i;tiial cotr sho 10l he iriillitv V. hit -1 Iis easier To) relpresent in The coiln-

-~~ f-ut 'I ~The 'olt of, 11,1 i i of Course /ezi ii!ro giiilo tin- na Thex ri r-e contains zeroe-s.

mnc, it I- sin thait tilie co-a ITTgon frorm if) to 1i is tin- satie as tihe cost Ini going frorm n) to
Ii, u- :iel of, -re tIat lix elcirictit rn rituals Tilte valuie of Tire roarrix elemnrt ii An NxN
IIPIrr trial nix Is Iliirieiiiteiv 'onivertedi into nr otre-iireisimmil art of' 1-n gthi N where each pi e-
tn-lit if T liv arraY is I list of (loiitt vflties. F-or rtit, tiii elenreirt off rIre( array. eachi point with a

If I' r1' rPsVI-ir .d liv a douldet T he ijolrit-I (Thitlll, ill i' node niilher In aid thle cost of

\tualiiitLii -- eiitI iai I f e1i1iiv:Il- Itoti till- A* algiir -iii i.-elolwd~ by I lart, N Issoir.

* .i k),;-h---I Nk as u--i--i to si- trcii III, graph st inctirf, for an or-dered listing of noniconipet it iv(
lilliti c it.- li V 1-%to. given) tiodi's. Facli route is re-presviited liv a linked list of nodes, withi

I l tI 'Ic fisl ' i Till, 'tatlt Th'ile fi ria nodet hung t- i(est iriat ion riole. The rot e with tirhe
-A t I-t c I i-l-d fit-t iti lte rarItevs :Ire ri1orloiper it ye. no Two routes, can shrare a path and

11i1 ' Ill% lIIIO -lutef t \%o srtIc -c--s i trfIal-s Ii tei )vIr resil v ve pa( II%(-It I . Tihe pr-ogr-am Is currently
1,-i"tl~ Iv.n t llirt ill t V. pathi call shiaie aI roald iritersecrt ion. IDr-jeridirrg ol rThe road wildthus

it t -r-t irl- t iris tui:rv or rnrv riot he, a trucl-:t-rx- restrictioti.

'Ilflu tijot- iliffer,-tiu- i-f tie iiilr tt lir iior (NIPi-) aigo-it urn nisel lotre fromt A* is
l it \* li~lt- a shn aslilt- iir-t (o14i1111itri rotef is ilisoverf. whleNPI- keep- sacigUntil

ri t iri- ijre nIf triir-utix plo-- rour ti's (rI. ill, r"i-l i ct tin roler of rout's Ias heern fond. A*
- fV si-iaratv li-t- of iroles i-ili-i OPENK anil ( O>h1i 1 N is tire- list of nxodes that have

lhut _\ T I ( fl t ixplor-el 1 ti alix it cotut ntis onily t, ilt, 11t arnrode. Aheti a node( is explored. it is
It I: tI, w hLN t')( I,(l)'- I.1 it I I o-rtLTit-- :ire( fitl oti ItIin- ()l\ fIst. I owever, if one of

rut'-- ilas pti\iiil 'w-T) ri-:Iili-i IV. :miofte riiti. Tin thet tior- rI'slY of tire- Two routes,
PI- 1' mid-l arIlk I-c, jj;jr.r fi il- t%%o( turin-s, Xxijilii rtri.i. fr IllW aloill

ft V Ili I!i:rI tlti WI AiiK :Iic (l] li-i ;if-, k-;it as, : itici Ilitkd list. wi ;Ii sfot at
- 'to I- i --- ii-p Kxx,'tlertin', ir t~~ Pfl- 5- TLKMINff-\ ((Lf)SiKI)j .NON'l'LI?\IINAI.

1""),N 1  I'T[ \xi) r P)I -,TIN V-ii I\- -v t-ctniiir- whrfire. flc-tirratiotill' cis .aI'irr-u. ini

- ~ ~ ~ ~ ~ ~ ~ ~ f :; iII-\i li- i-hn- i--rl it' tirtil ruin's: thi i-- iii air expli-irl)SIiA

I It V :I I I Ifl it-,- :I li-'lInst ],- fill),itjii tio ist ittu:itci t - l.ost to 4ri froui lilt, (-ricri-rir

tt j' j- j'~ j 1ir I '- hl , "1' t. 1~i If(. ti. flirt- '(ii 1, 1in - 1w~ii tn it fode

-1 11 1- w 11 d ,1f- f 1 1 1 1 ' 1 i (i . % w I) I f I l m

- 1 111 .t. I :o I I I ' I To Il - I -apd. i ii T 7I- 1 I le - 1 1 0 1 ( il

6

0 ' . . . . . . ..a

%



traversing a path fronm the start node to tile point ii arid then oil to thle (le-t itttil to

huitic fu nct ion can be shown to be "accept able" if I is roonot onical ly iiondl leet'v'ii Arld iioi1-

gal ye. If the heuristic function is acceptabile, t lien thle silgorithi k gujavsioit e to iititiit- %%it

the OptiItitII solu1tion. Concept ually. The Simlplest loorist c that itievlts t lo''- re, I Il'ii I- Tip

ecdendistance fromn the t lie node ii to thle destinti ont node-. 'I' ii tiiil to-ic:1 'siti Ili

never be less than this straight line (listaiice fromt ii to tlie dest itst loll

The bas.ic dat a St ructuore ki-ed for this pr'ograi- tble (it ' Iriot tIi.li I- s~. :if
ZetaLisp and ComoniLI. It is siliiilar to tile diset(.iiltodie'lf pi;' 1v-t fd Ll>\N/ 1.1>1'.

-. Lath node defs;truct lists six slots conitaitiing ,node tiitiltr . sit li'vliitit I-
Pointer -dgt- fwiht t tsit i'~rillitf ''lli' i

corres-poiid to the liuttliter uised InI thle ctiiicidleltee 111:0 rix. IeI( fsitit iiilieitri

tle searchi tice, thev down-pointer.s provide the litiks for tl( lie n k((] li t if ito It,., I- igIt- :1
tntialited cost from tilt- tart node to tile sub-ject nole, f-weighlt is, tw h 11e oftt * ti- ItII
v et iiiisttd cost oif reaching the destinisuioti tioth. Type is as e xplainecd ill Tile lv .11 'll'r:111:~
cittrdinait-s are theo geographlical coordinates of thein' t rsect jolt l'fivtst'iit \ ilv t'I'll,

* etitirt' search tree can he explored b) tra veling along tll, linked list front il, hir-I iiod, t'Til 11
- . node. Att'siihi DESTINATION node or TERMINAL. node, Trace' ilit fstit r popler" 'tl t t 't:1

node. A graiph atid the correspotiditig ('niticidetie, tmatrix are shiwi ilt figuv' 2. 'Ill-,x~ i i t

of thei starch trt'e (-ati be szitnlilietl ht\ settin g thll hieuri-oiv fiiictiitti to /,rtt. Tltl-si :110114 All
al, o01lectitig nodes [i and ii correspondts to t lit' value ill ili:It rix It ' Til I Il.) il

cotirt'spotiliit viarchi t ree i ,fiowni iii figiret 3. The nitlt of thfit- t rt't' r,,on ttv tiI' tI t II(.1
lit' graph if figure' 2(b). Tile' startinig poinit f'or tile vasrcli t vtt' is todlt I :rdOil, i- iti14

lhtv'at'thit-t tltetnletits of nodte 1. Tlle cott'tt'st)Ittitg distautc'- fritti ith'Isi'-lio
iljsii't'tt to nottes 3, 2. and 8S. Nodlt 3, in tuin. lists otil twit dvsin ititm. ii I 1- 1

* :i~arct'tor 110111. 'I' ciiilatiye istai'es frnt nodu I to litte>, 2 atid I ir, sisitstjsi -it! to) tf

nd-.At tli point, it shIould bet observed that atiotlit'r pil i to tioth,' 2 ist- :il 1 ~ 1, -i

lisiot-ftrd bit wIlh a di"1 alice rtf otld 300 Comuparetdt to I 00 If lit. stilt stairtt i-- fr t~cl I'
* ' ~~lilt' iletiial niolts art' 'xpsimidvdt, til.t' e xv' ill het let- ticasl t'xct't tlis11 ti' e ig t (tt tilt' Itt

%%wIll he I 500) realfl.t (i l - :300) 1 liati for til lit' iher t'-. 'Fi'htrclirt'(. t 1it silht rt't %%i It t111!ie L

* otiglilt cai Iw pltttt't. ''lis I's iticiateid by ti' le i sicross tlt', Iit midl Ill, lttir P 1, t'\ I!:

li:t iit tin o ur ou lndtisltsoi.il'I;itl ile o %o c nd to -li -

'Ilit't't sicc'ssctr fuinc'tiltn, for' ilit' ihtt i c w )le rittenl antI s'Ir w itll i-il tfittiil-diii

it'l.' p'gsaiiii. 'Ilii'-i' :1lt (1) new . (2) fetch sail (3) pstore. Thit'st fotict ititi W(.e et.iit
ti To hi~c ii', It1 1ptt v1 lilt.wltti thi' tvgitisl viltli of thws progtsiu wsis eutlid Ii, rilt iii Itstiz

- ~~~~t hose fiiit , itilor tlit' mtiil' illititit 1-tl t l i ,iutt. 'llt ftiiitt ion new :tsistii gevisyn

rt'irot.~i. n, rptt I w-l migoit- toittl' getprop futnctiont. Sittiiilsivlk. fetch !it-

:iitt/il iime an pirop rtyan i" hiturn utau

*F1igivt' 1 1, si li-t of sill g'dlied xsiisth's, ;iiitl a li~t tif t'vt'l\ f'iti m tii ilting %% h~ :1Ill .

f:Illtittit', "illtil I ll% si ..it .. ftiti oi an Ii aiir i c cal ssirsip ii ill or'i-tit To Itti i t,-fi-I it

- tti4 I~tciiv~ix si, ii' liri to tlit' fliiltili-' insert-answ~er and' grap)h. l 1t' 1 fiti tt ge~t-

grp0ll il : nIr\ Il ar la I 110 1

hoI 1'14 l,, I '- o l,' IlA )J -l i

a"7

04,



-4'4

(a)

1 2 3 4 5 6 7 8

1 0 300 1000 1700

2 300 0 800

3 1000 800 0 800

. 800 0 1500 1000

5 1500 0 250

6 1000 250 0 300 11400

, 30 0 1000

: 17f0 1400 1000 0

"S.

I- igi r. (a) Graph Peprese:itat ion of Routes and (b) (orresponding ('oiucidence

- o

* ,*" .'*** : r*. x
S,,,



C00

co0
cm4.O

*r 0o
VnML

40 LO cc L

CV2 0

cc~

A -D

R =CmCIS 0

T- r- - to L

cm T- C#

ccccqeL

cm4.a

cmj

0..
cmtoV

A~. ~ dj J4~ *~* ~ -..- ' .' 4. *4. ~ .o
C. rr Jry~VW4~ jS.....St.4'a

4 -~ .~ *.PJL-13-



List of functions and calls to other functions and global variables:

triple:
get-graph define-window pcopy pstore draw-arc update checklist
send print-answer new
GLOBALS USED: no-nodes-left finished startnode destnode nbrpathsfound

: answerlist top ptrnodel nodel
get-graph

store-graph GLOBALS USED: coordinates data arr
store-graph

graph
% graph

graph
new

'V." fetch

update
fetch pcopy pstore new draw-arc insert-node pop print-list
GLOBALS USED: finished top ptrnodel

draw-arc
fetch line

insert-node
fetch store-soln pstore find-link GLOBALS USED: destnode

* :find-link
fetch pstore prune-check

store-soln
prune-check fetch pstore insert-answer
GLOBALS USED: nbrpathsfound answerlist

insert-answer
insert-answer

pull
fetch pstore GLOBALS USED: no-nodes-left finished top

prune-check
fetch prune GLOBALS USED: destnode

prune
fetch pstore

print-answer
.J pop fetch

GLOBALS USED: start-node dest-node
penult

fetch
checklist

pop fetch penult push
GLOBAI,S USED: no-nodes-left finished startnode answerlist top

J, print-list
fetch GLOBALS USED: top

make-colors
line

Figure .1. Global variables for multiple route follower

10

a0 r .

N I.



GET-GRAPH--- <--TRIPLE-->--CHECKLIST-->--PENULT

.,.. \ / \

STORE-GRAPH \ / PUSH

I I --- DRAW-ARC--> -- LINE
GRAPH---- UPDATE-->--

I I ---PRINT-LIST

heuristic--<--INSERT-NODE-->--FIND-LINK-->--PRUNE-CHECK-->--PRUNE

hypotenuse

STORE-SOLN----------> ---------

INSERT-ANSWER

Figure 5. Flow Diagram of Principal Functions Used in MRF

B. Graph Generation Using Mouse

This module provides a capability for the operator to manually input a graph representa-
tion of the mobility map by using the mouse device to trace mobility corridors on the color moni-
tor. The software automatically generates the internal data representations. The top level func-
tion in this module is get-graph-using-mouse. The MRF module calls either get-graph or

*- get-graph-using-mouse depending on whether graph data have been digitized previously or
are to be obtained using the mouse to extract routes from a cross-country mobility map displayed
on the color monitor. This function first initializes several arrays and then tests to see if a
monochrome or a color window is to be created. The variable win-1 is bound to the window
name, and the global variable *flag* is set to true. The function trace-are-using-mouse is in a
loop that continues until nil is returned by the function.

" A mouse is a device that is used for controlling the cursor position. It consists of a small hand-held box with a
small trackball mounted flush with the bottom of the box. When the box is slid over a smooth surface, the track ball
can rotate in either of two dimensions. The mouse device also contains three buttons that the operator can push in order
to signal the computer.

11



The function trace-arc-using-mouse calls draw-segment, which fits spline curves to a
road segment. One or more segments constitutes an arc with a solid circle drawn at each end

P "of the arc. When draw-segment returns nil, the last arc has been drawn. Otherwise, draw-
segment returns a list with two atoms, which is then bound to the variable curve. The first value
is the traversal distance of the segment, and the second value is used to test if the segment is the
last segment of an arc. If it is. then the node at the end of the arc is drawn if it was not previ-
ously drawn. If tile segment is the first segment of an arc and the function old-node-p returns
nil, then the node at tile beginning of the arc is drawn.

S"The function old-node-p is a predicate function that tests to see whether the coordinates
for the new node correspond to any previously tagged node within a precision of 10 pixels for
each axis. Thus, nil is returned if the node is new, and the node number is returned if the node
corresponds to the location of a previously tagged node.

The function plot-solid-circle has four arguments: x and y coordinates of the circle, the
node number, and the color of the circle. The function prints a solid circle, prints the node
number in the center of the circle, and then repositions the cursor at center of the circle.

C. Line and Curve Drawing Functions

The function draw-segment draws lines on win-1 by calling the function traverse-road,
which in turn calls the function connect-points-with-line. Mouse clicks are used as fol-
lows: left click puts point, middle click indicates point is last point. The straight line curve
connecting the points is cleared prior to drawing a cubic spline curve through the points with
draw-cubic-spline. Tile number of points used to generate the curve is returned.

The function traverse-road calls connect-points-with-line and uses the Pythagorean
theorem to compute the length of each straight-line section defined by the arrays x-cor and
.- cor. The lengths are summed to get an approximate value for the length of the spline curve
fitted to the sequence of points. If connect-points-with-line returns nil, then traverse-road
will also return: otherwise, the segment distance will be computed and returned. Nil is
returned by connect-points-with-line to signal that no more arcs remain to be traced.

Tile function connect-lines-with-points places points on a window with the mouse and
draws lines between them while storing the point coordinates in two one-dimensional arrays.
Window is the exposed window where the points are placed, and x-cor and y-cor are the two arrays
where tile relative window coordinates are stored. Clicking left once places points; clicking mid-

ldie places the last point and exits. The number of points is stored in the fill-pointer for array
" ., x-ror: the function then returns the number of points.

D. Screen Control Functions

A global variable is used to specify whether a color or a monochrome screen will be
used to display the graphics. The variable called *screen-type* can have two valid values,
which are (1) color: a color window will be created on the color monitor, and (2) b-w: a mono-
chrome window will be created on the right side of the monochrome monitor. Similarly, the func-
tion draw-arc will call either bw-draw-arc or color-draw-are depending on the value of
*• rreen-type*.

-- E. Special Macros

Two macros are used by the other software modules and are defined below The function iff
i., the standard

(if forml then form2 form3 ... else form.a form-b ...)
'ofltrurct. The key word "then" must be use(d, but 'else' is optional.

The macro loopl has syntax similar to the cond function except that it loops instead of fal-
ling through if no predicate evaluates to t. The syntax is shown below:

(oopl
((fcn_l) forml form_2 formn3 ...)

'.' (fcrn_2)

12

. %"

%. ~.~ d ~ ,-,V' 5 ~ 5



(fcn_3)

e((fcn.n) formA formB ...))

where fcn-x indicates a function and form.x indicates an arbitrary LISP form or expression. If the
macro sees only a single parenthesis at the start of a line, it does not treat the function that
follows as a predicate, but simply executes the function and drops to the next line. Alterna-
tively, ((setq a t) 'exit) will result in the loop being exited with a value of exit returned.

413

Rn
m  

,

n

".*% ..

, 13

• /4

04b



HI. CURRENT STATUS

The software described in the previous section ha been debugged and tested with a rcla-
tively limited set of data. Special cases that were believed to be most likely to cause problems

were included in the test. Currently the graphics display shows the routes t hat have been
explored, but neither annotates the selected paths from the start to the destination, nor shows
the arcs that have been pruned. These capabilities will be added to the system in the near
future. Tests will also be conducted using larger graph structures. Figure 6 shows the output
of the multiple route finder for six cases using the graph of figure 3(a). Following the words
"father is n" is the linked list of nodes that exist after inserting the descendants of "'n" into the
list. In the linked list, the node suffixes have the following meaning-:

N - Nonterminal node
D - Destination node
P - Pruned node

none - Terminal (i.e., unexplored) node

(1) Start node = 4 and destination node = 6, number of routes = 4.
*Examining the output of case 1, one sees that node 4 is opened and its three siblings are added to

the linked list "4N-6D-5-3". Node 4 is nonterminal because all its siblings are on the list and node
6 is the destination node. On each of the succeeding lines the left-most terminal node is opened
and its siblings are inserted into the list. Finally, at the line "father is 7 :," the last unexplored
node has been explored and four destination nodes are on the list: however, only three of these
-nodes represent legitimate paths. To understand why this happened. consider the previous line.

, where node 8 was opened, and nodes 6 and 7 were added to the list. Node 6 is immediately recog-
nized as the destination node and is changed to type destination and added to the answerlist.
Node 7 is now opened and its sibling node 6 is recognized as the destination node. The func-
tion prune-check fails to recognize that one of the two node-pointers to node 6 should be pruned
because node 6 is the destination node. To solve this problem, the function checklist calls penult
to see if any of the pointers on the answerlist have identical penultimate nodes. Since the
paths are traversals from the destination node to the start node, the penultimate node of a
search path is actually the second node in the forward direction. \When two such paths are found,
the longer path is deleted from the ansu'erlist. This happened in case 1. and thus the path 6-8-
1-3-4 was eliminated.

(2) Start node - 4 and destination node = 6, number of routes = 2.
In this case only two paths were requested, and the search was terminated when the two were
found, since the only node open was I and the distance from node .4 to node I is greater than
either of the paths on the answerlist.

(3) Start node = 4 and destination node - 6, number of routes 1.
In this case the distance from node 4 to node 3 is less than the distance from node I to node 6.

* However, f(3) g(3) -t- h(3) is greater than f(6) = g(6), and the one destination node is found
immediately.

(4) Start node = 0 and destination node = 4, number of routes = 4.
*. This case is the same as case 1, except that the direction is reversed...s expected. the selected
, ,paths are simply in the reverse direction.

(5) Start node = 1 and destination node = 5, number of routes =3.
In this case the first, optimum path computed was 5-6-4-3-1. The subp~ith 5-6l- I was chosen
instead of 5-4 since it is shorter. lowever, inclusion of node 6, clobbers the alternative roue 5-6-
7-8-I. Ideally, MIPF should have selected the longer route for the first path so that the second

path could go through node 6. There are several possible approaches for solving this problem that

14

¢.1

4-4

%0%



0

.4)

o V

L L
cI 0 0 aV

W Co

c C - -
0 0 1 1 -u w
CL0 ko %D 6

E *U I m

0. . .TO

OL L

.5o z 40 4* * 4L g4 * *

c a e a a v

~~s.,.. 'Ino~ja
a 0D

-- ~'. -.sn~S~*15

Wgl.J



CL I

IC3 0

C,II X X4 u

o 06

m

N I 0 0 v.

--1, 4 . .

oI II IC' 0e 0
k k... k k

J i i A A Ai 1

I; 0 3c 3c

I co 40 0 0-..l

.. . .5 , - . ILI c C
a N 1 1 I 10 0

m L

I- L LL

3% 26 Z r~~ .26.2 0.'"v IZ.

19 0
00

l. L., ...i

. . ,, , .. , . . , 1

0.- - - -. 4 4' le.J

4. 0
CL

.4.9L C U



v CL 6 0

If T .0 0

a c c

40.a ,I1 0 0

0 z C. v .m

J3 C 0 0l ) .
ht. = . .*

I I I I

OC 0.11 0 0

L . .1. . 1

L) CI r~IIC I.

.1 01 10 1i

0 0 0 0 0 Cn.) 0I'

10 N

(o C CC

~inr~m C0 a

CL 0

000

c..

101,0 C-

-c I I I

N N C C L L

m x. in (L M

i II

1011.

~ ~ii17



will be explored in future work on this project.

(6) Start node = 5 and destination node = 1, number of routes = 3.

This case is the same as case 5 except that the direction is reversed. As expected, the selected path

is simply in the reverse direction.

'18

%% - --

O,'.

"'-

'p

'9

"'op.''VP
5".



IV. FUTURE ENHANCEMENTS

Several enhancements are planned for later incorporation into the system:

(1) A front-end that will compute the graph-theoretic representation from digital tralficabilitV
map data. Trafficability maps provide a plot of mobility across terrain for a given vehicle
type and specified weather conditions. These maps are thus the composite of several map over-
lays. Other groups are currently engaged in developing the capability to automatically
generate the graph-theoretic representation of trafficability maps. When software to accomplish
this task becomes available, it will be incorporated into the system.

(2) The number of route intersections in an area of interest is proportional to the size of the area.
The search time increases exponentially with the number of route intersections. Thus, is the size
of the area increases, there is an exponential increase in the search time. For effective planning
over long distances, a pratical system must have the capability to first focus its attention on major
roads and then use all available route information for detailed planning in small areas.

s.j (3) In the current implementation all graph links have a preassigned constant cost that could
correspond to distance or to the time required to traverse the path corresponding to the link. An
enhanced capability will enable cost to be assessed not only in terms of traversal time but also in
terms of fields of fire, availability of cover, and the potential for manmade or natural obstacles.

.

S.

•44.



V. REFERENCES

I Samet, H. The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys
16 2 (1984)

2 Zhang, T. Y. and Suen, C. Y. A Fast Parallel Algorithm for Thinning Digital Patterns,
Comm. of the ACM 27, 3 (1984) 236-239
3 Hart, PE.. Nilsson, N. J. and Raphael, B., A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEETrans.

.'%.

0 2



VI. APPENDIXES

".,.
.

'p

,.4:

,p.

'I' '..

.

04

S
"U' ,. "# e , - ,# .. e . .. °,o " °'. "- o -. - -. . - . oo . . , ' " " "% - , % "



A. Multiple Route Finder Program

.Ietof fuinctions an'1 calls to other finct ion, and~ global variables:,

store-graph (Iiine-witonIow pcopx l)'torv (iria~rc liptiale (lickl't
1en lljtt -anlsokr niew

(IOBALS 1511)D: ti-oe-etfinishedi ,tairt node (jest nodle nlrpatt h4sfouin
* answerli-t top ptrnodecl nodI-

store- grap1)h
graph

graph
graph

new
fetch
u1pdiate

fetch pcopy pstore, newx draw-arc insert-node pop print-list
G(1,0 1 A LS i~iifinis.hed top ptrmodie

heitrist ic
hx) pot enluse
(;LOI ALS I. F11) lefst nodle

draw- arc
fet cl line,

fetch~ stor(-soi pstor*' fintiitk (;IA)IALS 1 11: des.tuiode
- I~ii-hnk

fetch p~t ore pruine-check

.tore-soinl

priuii-lick fet ch p.,tort, in> ert-ani-wer
( LOBAiLS I SIF1). n Irpat hs-fou iir an.werlist

* ~Iwert -answer

fe-t cl pst ore (ALOBAIS I'SEDl: no-no(les- left tin ~shedi to

I'runie-c h ek

fetch pruine GLOBAL', USED: tle~t node
priine

fetch p-,tore

pop~ fetch
(,L013.LS t 7SE1: st , -nodle (lest-nodec

fetch
clwrklist

- pop fetch peruii It pus-h
1. 0L1 IAI I SII:n-nodes-left littishued start nodle at. vwulr-t top

fetch (dLOIAIS I !F1T: top

22

* .1',



- . t. .atr .W l I~
(defvar no-nodes-left)

(defvar finished)
(defvar startnode)
(defvar destnode)
(defvar nbrpathsfound)

(defvar answerlist)
(defvar top)
(defvar ptrnodel)
(defvar nodel)
(defvar coordinates (make-array 8))

& (defvar data (make-array 8))
(defvar arr (make-array 8))

(defun hypotenuse (xl yl x2 y2)
(sqrt (+ (- x2 x1) 2) (" (- y2 yl) 2 ) )))

Heuristic estimate of distance to destination from node n based on
Euclidean distance h(n). The total cost at node n is f(n) h(n) + g(n)
where g(n) is the total cumulative cost in traversing a path from the

start node to node n.

(defun heuristic (node-nbr)
(terpri)(princ " h[ ") (prini node-nbr) (princ ] -

(prinl(fix (apply 'hypotneuse
(append (aref coordinates (1- node-nbr))

(aref coordinates (1- destnode )) )))))

,e.* **************************get-.gra************************************
d..
* 1

arguments: none
returns: not used by calling function

(defun get-graph ()
(fillarray data

'((0 10.0 22.4 -1 -1 -1 -1 38.5)
(10.0 0 20.0 -1 -1 -1 -1 -1)
(22.4 20.0 0 26.0 -1 -1 -1 -1)
(-1 -1 26.0 0 35.0 30.0 -1 -1)
(-1 -1 -1 35.0 0 10.0-1 -1)
(-1 -1 -1 30.0 10.0 0 22.5 39.8)
(-1 -1 -1 -1 -1 22.5 0 24.1)
(38.5 -1 -1 -1 -1 39.8 24.1 0)))

* (fillarray coordinates
'((10 10) (10 20) (30 20) (55 27) (90 29) (84 21) (72 2) (48 4)))

(store-graph data arr))

i',
0*.

23



TRIPLE finds the N best routes between two nodes of a graph. The
routes are determined by constructing a best first search tree from
the graph. The search tree is stored in a linked list. When terminalnodes are added to the list, they are inserted into the list according
to the weight of the node. Nodes are terminal, nonterminal, pruned, or
destination nodes. The next node to be searched is the top-most terminal
node.

%s arguments: none
returns: none (top level function)

(defun triple (
(let (nbrpaths)

(setq ptrnodel nil)
(setq answerlist nil)
(princ

"input node numbers of start point and of destination: ",
(setq startnode (read))
(setq destnode (read))
(terpri)
(princ "input number of optimum paths: ")
(setq nbrpaths (read))
(terpri)

(get-graph)
(get-graph-using-mouse)
(define-window)
(setq answerlist nil) ;initial variables

5." (setq finished nil)
(setq no-nodes-left nil)
(setq nbrpathsfound 0)
(setq top (new))
(pcopy top ptrnodel)

1.- (pstore top nil 'downptr)
(pstore top startnode 'nodenbr)
(pstore top nil 'fatherptr)
(pstore top 0 'weight)
(pstore top 'terminal 'type)
(pstore top (aref coordinates (subl startnode)) 'coordinates)
(pstore top (heuristic startnode) 'f-weight) (terpri)
(draw-arc top top)
(loopI

(if (or
(update arr coordinates)* ( - nbrpathsfoiind nbrpaths))

(checklist))
((eq finished t)))

(send win-I :set-cursorpos 0 0)
(print-answer (reverse answerlist))))

g

5, 24

" ... .

".rZ



************************o****ap*********************

(defun store-graph

function takes the coincidence matrix 'data' and generates the sparse
matrix representation "arr".
arguments: data - coincidence matrix represented as 1-d array of lists

arr - sparse array represented as 1-d array of lists
returns: not used by calling function

(data arr)
(prog (m row)

(setq m -1)
(loopl ((= m 7) t)

(setq m (+ 1 m))
(setq row (aref data m))

U' (aset (graph row 0) arr m)))) ;Process mth row of data

********graph******** ** ** *** * ** **** ***** * ** **** * **** ****

(defun graph (r n)

graph recursively generates sparse list from mth sublist of input data
stored in the global variable data. The input representation uses -1

* to represent infinite weight (i.e., no path) and zero for the distance of
a node to itself. The zero and -1 values are stripped from the sparse
list.

arguments: r - a list containing mth row of coincidence matrix "data"
rtrs n - column number initialized to zero by store-graph
returns: list of lists containing weight and node-nbr for each path

V

(rin)

(setq n (+ I n))
(cond ((null r) nil)

(t
(append (cond ((<=0 (car r)) nil)

(t (list (list (car r) n))))
(graph (cdr r) n)))))

'pd

• *****************************updat**********************

(defun update ( arr coordinates)

' :function inserts descendents of father node into the linked list and checks
to make sure that a node and its grandfather node are not one and the sanie

arguments: arr - sparse matrix generated by store-graph
coordinates - Id array of lists containing x,y coordinates of nodes

returns: the Boolean variable finished

25

04

-V .%
i.'N.

- -

A)*i *.. q'*m*% ..
j



(prog (psnew p q qO wO)
(setq p (pull)) ; Get new father node
(cond

(finished (print-list) (return finished))
(t nil))

(terpri)
(princ "father is ")
(prini (fetch p 'nodenbr))
(princ ": ")
(setq q (aref arr (subi (fetch p 'nodenbr))))
(loop1

(setq psnew (new)) ; Create new node
(cond ((< > (fetch (fetch p 'fatherptr) 'nodenbr)

(cadar q))
Then grandfather node is differentfrom son node

(pcopy psnew ptrnodel) ; ptrnodel points to template
(setq qO (cadar q))
(pstore psnew qO 'nodenbr)

(pstore psnew
(setq wO (+ (caar q) (fetch p 'weight)))
'weight)

(pstore psnew
(+ wO (heuristic qO)) 'f-weight)

(pstore psnew
(aref coordinates (subi qO)) ;print
Icoordinates)

(pstore psnew p 'fatherptr)
(pstore psnew 'terminal 'type)
(draw-arc p psnew)
(insert-node psnew top))

(t nil)) ; else do nothing
(pop q)
((null q) (printlist) (return finished)))))

(defun insert-node (pin p)

insert-node inserts the node <pin> into the linked list <p>. First a
check is made to see if < pin > is the destination node. If it is. it is
added to the solution list_, If < p> points to a nonnull node, find-link
traverses the nodes and inserts <pin> so that weight is numerically

* ordered. If <p> points to a null node, <pin> is attached to <p>.'-1

arguments: pin - pointer to node to be inserted in linked list
p - points to the head of the linked list

returns: not used

(pin p)
(if (eq (fetch pin 'nodenbr) destnode) (store-soln pin p))
(cond ((not (null (fetch p 'downptr))) (find-link pin p))

(t (pstore p pin "downpt r)

042

%h-



(pstore pin nil 'downptr))))

(defun find-link (pin p)

find-link traverses the list < p > and uses the weight key to insert
<pin> in numerical order. If the end of the list is detected, <pin>
is inserted at the tail of the list.

.4 arguments: same as insert-node above

returns: not used

(defun find-link
(pin p)
(prog (psO psi)

(setq psO p)
(setq psi (fetch p 'downptr))
(loopi ((null psi) (pstore psO pin 'downiptr)(prune-check pin p))

((- (fetch pin 'f-weight) (fetch psi 'f-weight))
(pstore pin psi 'downptr)
(pstore psO pin 'downptr)
(prune-check pin p))

(setq psO psi)
(setq psi (fetch psi 'downptr)))))

.****~~~~~~~~t r************* 5j~e-ol n ***** **6* * *********

(defun store-soln (pin p)

store-soln increments the variable nbrpathisfound, then sets the node type
of <pin,> to 'dest, creates a new node, copies < pin > into the new node and
pushes the name of the new node onto the answerlist variable.

arguments: same arguments as insert-node above
returns: not used

(pin p)
(prune-check p)11 p)
(cond

AL-h((0(1 '(lest (fetch pin 'type)) nlil)

0 (t

(sotq nlbrpatlisfound (I-. rirpathisfound))
(pstore pin (leSt. 'type)

% (set q answerlist
(if ( nutll answerlist) -,then

(list pin) else
(insert-answer pin (fetcrh lpin 'f-weight) answcrlist ))))

('lefin ner-)se (pin W Ii-.)

27



this funct;on inserts the gensym name of a node onto the answerlist
according to the value of 'weight for the node to be inserted.
<pin> is name of node to be inserted,
< w > is weight of < pin >,
and <lis> is list onto which <pin> is to be inserted.

arguments: pin - pointer to node to be added to list
w - weight of node to be added to list
lis - local copy of the global variable answer-list

returns: the new value of lis

(cond

((null lis) (list pin))
((<- w (fetch (car lis) 'f-weight)) (cons pin lis))

(t (cons (car lis) (insert-answer pin w (cdr lIs))))))

(defun pull (

pull locates the top-most terminal node, changes it to nonterminal and
returns the pointer to the node. If there are no terminal nodes remaining,

- ,the global variable finished is set true and nil is returned.

arguments: none
returns: see comment above

(prog (qO q)
(setq q top)
(if (loopi ((equal(fetch q 'type) 'terminal) nil)

"St ((null (fetch q 'downptr))
(setq no-nodes-left t)
(setq finished t))

(setq qO q)
(setq q (fetch qO 'downptr)))

then
(return nil))

(pstore q 'nt 'type)
(return q)))

(defun prune-check (pin topl)

prune-check checks to see if a newly inserted node has the same nodenuinbcr as
any other node on the linked list. If so, the node with the larger weight. is
pruned (i.e., the node type is changed to pruned.)

arguments: pin - pointer to new node being checked for pruning
topl - pointer to list of nodes

a28

ri -e

S.-

.4""""""" " ,".,' ". ".". ".."- ""- """" *"- " "" '"" '-V' '-%.-,K



returns: not used

(pin topi)
(prog ( p n nin)

(if (eq (setq p topi) pin)

; then
(setq p (fetch p 'downptr)))

(loop1 (setq n (fetch p 'nodenbr))
(setq nin (fetch pin 'nodenbr))
(if (and

(= nin n)
(< > p pin)
(< > n destnode))

(prune pin p))
(if (eq p pin)

; then
(setq p (fetch p 'downptr)))

((null (setq p (fetch p 'downptr)))))))
.** ***** ** ****** *** *********u******************** ******* ***** ** *

(defun prune (pl p2)

;', prune is given pointers to two nodes on the stack with identical node* • numbers. The node with the larger weight is marked 'pruned.

arguments: see comment above
returns: not used

(pl p2)
(if (- (fetch p2 'f-weight) (fetch pi 'f-weight))

: then
(pstore p2 'pruned 'type)

else
(pstore pt 'pruned 'type)))

print-answer*********************** ******** ****

(defun print-answer (a)

print-answer first checks to see if a path was found and prints a message
if a path was not found. Otherwise, it prints out all paths found showingthe route from destination back to the start node. The answer list

%7W.contains all the destination nodes located during the search. This
function traces the path ip the search tree using the father pointer.

"- ,arguments: a - local copy of the global variable answerlist
rvturns: iot kise(

(prog (alI
(sot,! al (pop a))

(cond ((lull al)
(pritnc "** No t'ATI I "Ol NI) WI VEN")

(priri star inod(j)

29

Ik'% %*.P h



. . .. . . .. . .

(princ " AND ")
(prini destnode)
(return nil)))

(loop1I
(cerpri)
(princ "distance is ")(prinl (fix (fetch al 'weight)))
(princ ". Path from destination back to start is:")

(terpri)
(prini (fetch al 'nodenbr))

(loopi
((null (fetch al 'fatherptr)))
(prini '-)

(setq al (fetch al 'fatherptr))
(prini (fetch at 'nodenbr)))

((null (setq at (pop a))) (terpri)))))

(defun penult (al firstnode father)

penult traverses a linked list and returns the node number of the
% ~penultimate node. The first argument <al > is the pointer to the head of

the list. The second argument < flrstniode > normally has the value of
<startnode > which is the top of the search tree, If some other pointer

is used, then this function will return the node prior to <flrstnode>.
The third argument <father> is the pointer to the next node on the tree.

*For the search tree the next node pointer is 'fatherptr, while for the
linked stack the pointer is 'downiptr. If the list is null or has only
one node, then nil is returned.

*arguments al - pointer to the head of the list,
first-node - see comment above

* , fathier - see comment above

* ,returns: see comment above

(defun penult (al lirstniode father)
(loop I

((null al ) nil)
first node (fetch alI 'noden br)) nil)
firitnode (fetc (r(etch al father) 'iodenbr) ) al

'V (setq al (fetch al fathevr))))

(IfunrleI..klip t(

- 4i 'l Is "i- led orld v if l11rpa;thLfourlid qw U (a ' xtd. t- rr~jmr-l
rlinhr 'I'l, fmiliot tests to see- if the -eirch is hiii-ld i: ta%-~

ru '.. [ir' t fit ;r.,%N fr list is (amtieA to findl th Il - g't wililt ml

Ise 30

V O

4..



nodes on the stack. If any terminal node has a sma'!, weight, then the
search is not finished, and finished is not set to true finished is
set to true, then the program checks to see if any two paths on the
answerlist have the same penultimate nodes. This condition occurs when
two separate paths initially have the same route but diverge and come
together at the destination node. The pruner does not detect this case
since the node has already been marked as a destination node.

argument: none
returns:

(prog (p a w lis)
(setq lis answerlist)
(setq p top)
(setq a (pop lis))
(if (null a) (return nil))
(setq w (fetch a 'f-weight))
(loopi ((eq t no-nodes-left))

(setq a (pop lis))
((null a))
(if (fetch a 'f-weight) w)

.'. :then
(setq w (fetch a 'f-weight))))

(setq finished t)
* (loop1 ((eq t no-nodes-left))

(if (and (equal (fetch p 'type) 'terminal)
(< (fetch p 'f-weight) w))

then
(setq finished nil))

(setq p (fetch p 'downptr))
(null p)))

(cond (finished
(print(setq w answerlist))

% (setq lis nil):initialize list of penultiniate node numbers
(setq answerlist nil)
(loop1

((null w))
(cond ((member

(set q p (penult, (car w) startnode 'fatherptr))
lis)

(pop w))
(t (push p lis)

* (push (pop w) answerlist)))))) ))

(d~fimmm print-lis
,•,'t {(dfun print-listA

,rint-list i. given th,. top of the linked list used a the besl-lir>t
.~erv t ~k or IeAvh nodei, 111f nodel mumber 1s pruite"i, folloxi'l

"inmetdiatfly by nod,. t vpe, unless the node is a terminal nodv. ()d'- for

t eruinal types are a., follows:

31

%,%% ,

040
f a" . ad *I V . " "- ", %' ," , " ' " - * " " ." ",



dI d estination, p -- pruned, n non-terminal anid no letter ijidicat cs ;i
terminal node. Nodes are separated by hyphens.

*arguments: none
ret urns: niot used

(prog (p q1)
(-Set( 1 p top)
(seiq q (fetch p 'downptr))
(prini (fetch p 'nodenbr))
(cond ((equal (fetch p 'type) 'pruned) (prini ' p))

((equal (fetch p 'type) 'nt) ( prin I 'n ))
((equal (fetch p 'type) 'dest) (prinI '(1))
(t iuil))

(1001A1 ((null q1))
(setq p (1)
(setql q (fetch p 'downptr))
(print '-)
(prIni (fetch p 'nodenbr))
(cond ((equal (fetch p 'type) 'pruned)

(prin I',p))
((eqtual (fetch p 'type) 'nt)
(prini 'n))

((equal (fetch p 'type) 'dest)
(prin I d))

(t nil)))
(terpri)))

32

I%%
I%

6,-V6 S



-*- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -*-
Following function is common to both property list
and defstru-t storage methods.

(defun new ()
(intern(gensym)))

(defvar node) ; common to both structures

,, ; Access functions for defstructures storage:

(defstruct (node)
(nodenbr)
(fatherptr)
(downptr
(weight)

(f-weight)
(type)
(coordinates))

This function makes instance of the defstruct. The variable old is
kept for compatibility with the equivalent prop-list function.

(defun pcopy (new old)

arguments: new - pointer to copy of defstruct
old - pointer to original defstruct

* "returns: old

(defun peopy (new old)
(set, new (make-node))
old)

(defun fetch (name prop)
,Compiler generates a spurious message that the function prop is not defined.

arguments: name - pointer to defstruct
prop - defstruct slot name

returns: slot value

(iff (null name) then nil :iff defined in zlib.lisp
else
(fset 'prop (fsymeval prop))
(prop (eval name))))

S-.' **** ****************************** ********************** **** ** ***** *

(defun pstore (narne value prop)

arguments: name - pointer to defstruct
value - defstruct slot, value

A33

04

%'1 ,, ,,- ,- . *



prop - defstruct slot name
returns: slot value

(eval "(alter-node ',(eval name) prop ',value)))

access functions for property list storage:
Inclosure of function in J <function> #1 prevents compilation unless
a shift-control-c operation is performed inside
the block. The functions have the same arguments and returns as the
defstruct equivalents defined above.

(defvar ptrnodel)
(defvar ptrnodel"
(defvar ptrnodel 'node)
(defprop node

((nodenbr val I)
(fatherptr val2)
(downptr nil)
(weight val4)

(f-weight 0)
(type valS)
(coordinates (x y)))

stackptr)

pstore has the same arguments as the LISP function put. However the
%. third argument is the key for the association list stored under the

property stackptr of the atom specified by the first argument.

(defun pcopy (new old)
(remprop new 'stackptr)
(putprop new (get old 'stackptr) 'stackptr))

. (defun pstore (atom value key)
(putprop atom

(subst (cons key (list, value))
(cons key (list (fetch atom key)))
(get atom 'stackptr))

'stackptr))

fetch roturns the value associated with <key>. The association list,
, -is stored under the property 'stackptr on the variable <.nameptr>

(d'fun fetch (nameptr key) (cadr (assoc key (get nameptr 'stackptr))))

.5.

34

'

.,..,.-....-.... . ....-....- , .-..-......-..-.-..-., .,>,.- _,-,. ,,, ,.,. ,.. ,.. ,. -.,,, 1



B. Graph Generation Using Mouse

-Syntax: Zetalisp; Package: USER; Base: 10; M~ode: LISP--

List of functions and functions they call:

:get- graph- using- mouse
* trac e- arc-usi ng- mouse
. Global Variables: coordinates *max-nonodes* x-arc-pts y-arc-pts

*j* *k*

t race-arc-using- mouse
* old-node-p plot-solid-circle-draw-segment
* Global Variables: arr *mno-iodes* x-temp-list y-temp-list nbr-pts

* *J* *k* px py *next-unused-node* coordinates red
plot-solid-circle

* Global Variables: win-I
old-node-prep

Global Variables: coordinates *maxno-nodes*

(defvar * max-no-nodes* 8)
(defvar coordinates)
(defvar data (make-array *max..nonodes*))

9 (defvar arr)
(defvar x-arc-pts)
(defvar y-arc-pts)

* .(defvar *next-unused-node*)
(defvar *j *)I
(defvar *k* 0)

-(defvar nbr-pts)
(defvar x-temp-list nil)
(defvar y-temp-list nil)

(defun old-node-p (x y) :return nil only if node is new
- - :function checks if node at, (x y) corresponds to previously tagged node

within a precision of 10 pixels for each axis

:arguments: x -horizontal coordinate of new node
y vertical coordinate of new node

:ret urns- ti if new node, node n umnber if old nlode

(loop I
% - 1 ,((wnill (aref c()ordlinates n )) ill

* ~-( -(abs (-x (car (aref coordinates n)))) 10)
-~(abs (-y (cadr (aref coordinates n))))10)) n

35



((- (subl *max-no-nodes:*) II)

(setf (aref coordinates n) (list x y))
nil)

(incf n))))

(defun plot-solid-circle ( x y value color)

Function prints solid circle, prints node number in circle and repositions
* :-.cursor at center of circle

arguments x y - coordinates of circle center
value - node number
color - color of circle

returns: not used

(let (xl vl)
(multiple-value (xl y1) (send win-I read-cursorpos))
(send win-i draw-filled-in-circle x y 10 (color:sc-fill-alu color -1))
(send win-I :set-cursorpos (- x 3)(- y 4))
(prini value win-i)
(send win-I :set-cursorpos xl yl) ))

. 7 ~~~~~* ** * **** ** **** ***** ***** *_*********************

"* " (defun trace-arc-using-mouse ()

Function calls draw-segment which, fits spline curves to a road segment.
One or more segments constitutes an arc with a solid circle (Irawn at each
end of the arc. When draw-segment returns nil, the last arc has been
drawn. Otherwise draw-segment returns a list that is stored in curve.
The first value is the traversal distance of the segment, and the second
value is used to test if segment is the last segment of an arc. If it is.
then the node at the end of the arc is drawn if it was not previously
drawn. If the segiment is the first segment of an arc and the function
old-node-p returns nil, then the node at, the beginning of the arc is drawn.

arguments: none

ret urns: see connent above

(let ((segment.-nbr 0) (cur-distance 0)
* curve (continue t)

(set Iqarr (make-array *niax-no-nodes*))
- - (.s, q x-tem p-list nil)

('t, y-telp-I ist nil)

(Ioop l
v(sItq px (makf-array 20 :type art-161) fill-pointe r ((:for storilg x

0:-w ( (etq pv (make-array 20 :tye)' art-16,) ) and v n ill.>, c(,(Prdljnlat

((null (print (setq curve (draw-segmenmt )fl) )(setq Cout lille nil))
(setq tturn-distance ( ciin-(lis-.li, (,-r cur ye)))

(set.q nbr-pts (- (array-leade.r px 0) 1))
I (se ond curve)) 1 ; i1 tof h -- >r il o)f i

36

04

% . . . .,.::.:%



(print "last point of are") ;yes
;draw node at end of arc if not previously drawn
(ifT

(null (old-node-p (aref px nbr-pts) (aref py nbr-pts)))
then
(setq *k* *next-unused.node*) ;process new node
(plot-solid-circle (aref px nbr-pts)(aref py nbr-pts) *k* red)
(incf *next-unused-node*);
(setf (aref coordinates *k*)

(list (aref px nbr-pts) (aref py nbr-pts))))
(iff (not (null px)) then (print (push px x-temp-list)))
(iff (not (null py)) then (push py y-temp-list))
draw node at beginning of arc if not previously drawn
(iff

(and
(=0 segment-nbr) ;first segment of arc AND
(null (old-node-p (aref px 0) (aref py 0)

then
(setq *j* *next..unused..node*) ;process new node
(plot-solid-circle (aref px 0)(aref py 0) *j red)
(incf *next-unused-node*);
(setf (aref coordinates *j*) (list (aref px 0) (aref py 0))

(it

(and
* (=0 (print segment-nbr)) ;first segment of arc AND

(=0 * next- unused- node*)) ;first arc of graph
then
(setf (aref coordinates 0) (list (aref px 0) (aref py 0)))

4' (plot-solid-circle (aref px 0)(aref py 0) 0 red)
(incf *next-unused-node*)
(setq *j* 0))

(incf segment-nbr)
(setq *j* *k*)) ;end of loop

(print x-temp-list)
(iff continue

then (princ "** j k ")(prinT *j*)(princ " ")(prinl *k*)
(print x-temp-list)

(setf (aref x-arc-pts *J* *k*) x-temp-list)
(setf (aref x-arc-pts *k* *j*) x-temp-list) (setq x-temp-list nil)

(setf (aref y-arc-pts *k* *j*) y-temp-list) (setq y-temp-list nil)
(setf (aref arr *k*)

(append (list(list cum-distance *j*)) (aref arr *k*)))
* (setf (aref arr *j*)

(append (list(list curn-distance *k*)) (aref arr *j*)))) )

S, (defun get-grajph-Lusing- mouse (

Thi, function is the highest level function in the miouse-graph inodule.
'[lie NI RF module calls either get-graph or get-graph-using-mouse, depending

on whether graph data have previously been digitized or are to be

37

0 "
rr- .*i- -



obtained using the mouse to extract routes from a cross-coLuntry mobilir v
map displayed on the color monitor. This function first iritialliV.,
several arrays. The function define-color-window is :alled and a color
window is created. The function trace-arc-using-mouse is Ini a loot' th.At
continue-, until nil is returned by the function.

* arguments: none
returns: not used

(setq *j 0)
V (setq *k* 0)

(setqI coordinates (miake-array *inax-no-niodess*))
(setqI x-arc-pts (make-array lit* max- no- node,,* *tna\ iio-nodv- )))
(setq y-arc-pts (make-array (list *Iniax-nc-no1es**n\orl.*))
(setq *next-unus ec1node* 0)
(loopi

((null (t race- arc- usi ng- mouse)))
'finished)

d5-

4 3

Now



C. Screen Control Functions

" -*-Syntax: Zetalisp; Package: USER; Base: 10; Mode: Lisp -*-

List of functions and functions they call:
draw-arc

color-draw-arc bw-draw-arc
Global variables: *screen-type*

color-draw-arc

fetch line
Global variables: win-i red

line
Global variables: win-I

bw-draw-arc
fetch
Global variables: win-I

define-window
make-colors define-color-window define-bw-window
Global variables: *screen win-I *flag*

define-bw-window
Global variables: win-i *middle* *top* *right* *bottom*

define-color-window
make-colors
Global variables: win-i

make-colors
Global variables: black red green orange blue white *flag*

(defvar *middle* 544)
(defvar *top* 0)
(defvar *right* 1088)
(defvar *bottom* 736)
(defvar win-i)
(defvar *screen-type* 'color) ;default screen type is color
(defvar *flag* nil) ; set to t when define-window is called
(defvar black 0)
(defvar red 1)
(defvar green 2)
(defvar orange 3)

* (defvar blue 4)
(defvar white 5)
(defvar *y-offset*)
(defvar *x-scaler*)
(defvar *y-scaler*)

arguments: none
returns: not-used

(defun define-bw-window )

3a

0

B t f~f' tft 
1

, , tf



(setq win-i (tv:make-window 'tv:window
:left (addi *middle*)
:top *top*
:right *right*
bottom *bottom*
expose-p t))

(setq *y-offset*
(*(/(fix (* 0.8 (send win-I :height))) 100) 100))

(setq *x..scaler* (// *y-offst* 100))
(setq *y..scaler* (*-1 *x-scaler*))

* (setq *flag* t)

(defvar win-2)
(defun define-bw-windows0

(let (xO y0 xn yn x1 yl)
(multiple-value (AO yO xn yn)

(send tv:main-screen :edges))
(setq xl (± A0 (// (- xn x0) 2)))
(setq yl (+i yO (fix (* (- yn yO) .6))))
(tv :make-window 'tv:lisp-listener

:superior tv main-screen
:edges (list xO yO xi yi)

:expose-p t)
(tv :make-window 'tv:lisp-listener

:superior tv :main-screen
edges (list (1+ Xl) yO xn yl)

:expose-p t)
(setq win-i (tv:make-window 'tv:window

:left AO
:top (1+ yl)
:right x1
.bottomn yn
:expose-p t))

(setq win-2 (tv:make-window 'tv:window
:left (1+ xi)
:top (1+ y I)
right xn

:bottom yn
:expose-p t))

(setq *y..offset*
(* (// (fix (* 0.8 (send win-i :inside-height))) 100) 100))

d~. (setq *x-scaler* (// (send win-i :inside-width) 100))
(setq *y..scaler* (*-1 *x..scaler*))

* (setq *fiag* t)))

(Defun make-colors (

Modifies the lookup table for addresses 0 through 5

.***************** make-colors************ **** ********* * **

arguments: none
returns: not used

40

'ASK



sn - rW bla 0 0

(send color:color-screen :write-color-map black 0 0 0 0)
(send color:color-screen :write-color-map red 1023 0 0 0)
(send color:color-screen :write-color-map green 0 1023 0 0)
(send color:color-screen :write-color-map orange 850 261 104 0)
(send color:color-screen :write-color-map blue 0 0 1023 0)
(send color:color-screen :write-color-map white 1023 1023 1023 0)

arguments: none
returns: not used

(defun define-color-window 0
(setq win-I (tv:make-window 'tv:window

:superior color:color-screen
:borders 10
:save-bits t
:edges '(128 50 1151 1000)
:blinker-p nil
:font-map '(fonts:cptfont fonts:h7)
:char-aluf tv:alu-xor

-\ (make-colors)
(send win-1 ':expose)
(send win-I ':clear-input)
(send win-1 ':clear-window)

-. (setq *flag* t))

(defun define-window 0

function first tests *flag* to see if window has already been created.
function then tests to see if window is to be color or black and white

arguments: none
returns: not used

(cond
((eq *flag* t) t)
((eq *screen-type* 'color) (define-color-window))

* (t (define-bw-window))))

d******************** ** **raw -* * *

(defun bw-draw-arc (p1 p2)

.,) : function uses pointers to access node numbers and coordinates in order

to draw a line between the two nodes and solid circles centered at the
', node positions and with the node numbers printed in the circles.

arguments: pi p2 - pointers to nodes

W P 41

,*~ J

-e4



T'vNUv

returns: not used

(Ilet((x I (* *x-scaler* (car (fetch pi 'coordinates)) )
(yL (-- *y-olfset* (* *y-scaler * (cadr (fetch p1 'coordinates))))
(x2 (**x-scaler* (car (fetch p2 'coordinates) )))
(y2 (--*y-offs;et* (* *y-scaler* (cadr (fetch p2 'coordinates))))))

(send win-I draw-line
xl yl x2 v2
tv:alu-ior)

(send win-I :draw-tilled-in-circle x2 y2 10 tv :alu-ior)
(send win-I :set.-cursorpos x2 (-- 1.5 y2 ))
(prini (fetch p2 'nodenbr) win-I)))

(defun line (win-I xstart ystart xend yend color)

draws line between two points.

arguments: xstart ystart -coordinates of first point
NN xend vend -coordinates of second point

color -color of line to be printed
returns: not used

*(send win-I (Iraw-line xstart ystart xend vend
(color:sc-fill-alu (eval color) -1)))

.******* * **** *****color-draw,.arc***********************

(defun color-draw-arc (p1 p2)

function uses pointers to access nodle numbers arid coordinates in order
to draw a line on the color monitor between the two nodes arid solid
circles centered at the node positions and with the node numbers printed In
the circles.

arguments: pi p2 - pointers to nodes
returns: riot used

(le (xi( 10 (car (ec l'oriae)

(v I( 800 (* -10 (cadr (fetch p1 'coordinates) ))
(x2 (*10 (car (fetch p2 'coordinates) )))
(y2 (* 00 (* 4t0 (cadr (fetch p2 'coordinates) ))

(line win-] x1 yll x2 y2 red)
(send win-I draw-tilled-in-circle x2 v2 10 tv :ali-ior)
(send win-I :draw-filled-in-circle x2 y2 10 (color:sc-fill-alu red1 -1)
(send win-I :set-rursorpos (- x2 3) y- 2 1))

Si ( prin I (fetchi p2 'nodnhr) win-I )))

42

04 ; M



(defun (lraw-arc (p1 p2)

function tests if the screen ty .pe is color or black white and] call.- thle
corresponding function for drawing an arc bet weeni tile nodes Specified by
p1 alnd p2

arguments: p1 p2 - pointers to nodles
returns: not used

(ill (eq *screen-type * 'color)
then (color-draw-arc p1 p2)
else (bw-draw-arc pi p2) )

44

43I. .



D. Line- and Curve-drawing Functions

-- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10; -*-
S Several functions were previously written by W.W. Seemuller with extensive

* modifications and name changes by J.R. Benton

(defvar px (make-array 20 :type art-16b :fill-pointer 0)) ;for storing x and
(defvar py (make-array 20 :type art-16b)) ;y mouse coordinates

(defun draw-segment ()

* :draws lines on window 1 with function 'connect-points' - left click
puts point, middle click indicates point is last point. Function
clears the straight line curve before a drawing cubic spline curve
through the points with 'draw-cubic-spline'. The number of points used
to generate the curve is returned.

arguments: none
returns: not used

,. (let (distance)
(iff (null *flag*) then (define-window) (setq *flag* t))
(iff

(null
(setq distance (traverse-road win-I px py))) ;put initial points

then nil
else
(iff (neq 0 distance)

then
(send win-I draw-curve px py(array-leader px 0)tv:alu-xor); erase
(send win-I :draw-cubic-spline px py 10)) ;draw cubic spline curve

(list distance (array-leader px 0))))) ;return number of points found

* * * ** ** ** * *** * **** * ** *** ***tra**rse-road**** * * **** ** * *** ** * * *** * ** **** ** *

(defun traverse-road (win-I x-cor y-cor)

This function calls connect-points-with-line and uses the Pythagorean
theorem to compute the length of each straight-line section defined by the
arrays x-cor and y-cor. The lengths are summed to get an approximate
value for the length of the spline curve fitted to the sequence of points.

arguments: win-I - window name used by all modules
x-cor - array of x coordinates computed by connect-points-with-

line
y-cor - array of y coordinates computed by connect-points-with-

line

(let ((w 0))
(iff (null

44

..,1Oa

$



(connect-points-with-line win-I x-cor y-cor))
then nil
else
(loop for n from 0 to (- array-leader x-cor 0) 2) do

(setq w
(+w
(sqrt (+

( (- (aref x-cor n) (aref x-cor (addi n))) 2)
( (- (aref y-cor n) (aref y-cor (addl n))) 2)

w)))

* * *** ***** * *********** ** * *** ******da u**** ****** ** **** ***** ****** ******

:(defun display-curve (px py) draw the cubic spline
(send win-I draw-cubic-spline px py 10))

(defun clear-win ()
(send win-I :clear-window))

*******************connects-pointswith-line*******************************

(connect-points-with-line window x-cor y-cor &optional alu)

argiments: window - exposed window of flavor tv:window
x-cor - one dimensional array
y-cor - one dimensional array
alu - optional color alu

returns: number of points moused or nil if <R1 > is clicked

This function places points on a window with the mouse and draws lines
between them while storing the point coordinates in two one-dimensional
arrays. "Window" is the exposed window where the points are placed,
"x-cor" and "y-cor" are the two arrays where the relative window
coordinates are stored. Clicking left once places points, clicking

:;I middle places the last point arid exits. The number of points is stored
,, :;: in the fill-pointer for array "x-cor" (so x-cor must be created to

handle this) and the function returns the number of points.
I;. If "alu" is not passed, lines are drawn with the tv:alu-xor option
and can be cleared by sending a :draw-curve message as:

(send window draw-curve x-cor y-cor (array-leader x-cor 0) tv:alu-xor)

WWS - 05/17/85
. Modified by JB to exit without processing points if <RI > is clicked.

(•,efun connect-points-with-line (window x-cor y-cor &optional alu)
(tv:mouse-set-sheet window)
(let (button x y first-point

-, 450

%!~* , ~ ' -.. *U ~C ~ U

-- U d . .* - **t



(line-alu (cond (alu) (t tv :alu-xor))))
(multiple-value (button x y. ) (get-mouse wviiidow))

(iff (neq button 4)
then
(aset x N-COP 0)
(aset y y-cor 0)
(store-array- leader I x-cor 0)
(send window draw-point x v' line-alu)
(do ((index 1))

((eq button 2)
(array-leader x-cor 0))

(multiple-value (button x y ) (get-miouse window))
(Cow, (Inot

(and (eq x (aref x-cor (subi inidex)));throw away
(eq y (aref y-cor (subi index))))) duplicate points

(aset x x-cor index)
(aset y y-cor index)
(store- array-leader (addi index) x-cor 0)

(cond ((null first-point)
(send window draw-point (aref x-cor 0)(aref y-cor 0)

line-al u)
(setq first-point t))

(send window draw-line (aref x-cor (subi index))

(aref y-cor (sub 1 index)) x y line-alu nil)

* (setq index (addi index)))))
else

(tv:mouse-set-sheet (send terminal-io :superior))
nil) )

-~ A,
'N.



E. Special Macros

\ lacros used for tile automated route finder for Multiple tank colun s

-. (macro itT (s ignore)

ill is the standard
(if form l then forn12 form3 else fornia forinb

iff requires that then be present.

(append (cons 'cond
(list (cons (cadr s)

(do (then-forms (x (cdddr s)(cdr x)))
((or (nInl x)

(eq (car x) 'else))
then-forms)

(setq then-forms
(append then-forns

(list (car x))))))))
(cond ((null (cdr (member 'else s))) '((t nil)))

(t (list (cons t. (cdr (men ber 'else s)))))))

, ... *..* * ******************* 1001)*1******************* ************ ** **

(macro {oopl (s ignore)

The macro loopl has syntax similar to cond except that it loops inst, ad
of falling through if no predicate evaluates to t. The syntax is shown
bvloX%:

(loop I
((fcri I ) forn_2 forn_3 form_.4 ...)

((f,' -A ) forin_3 ...
where fcnx i,,dicates a function and fornix indicates an arbitrary

* I expression.
~. €, If the iracro sees only a single parenthesis at the start of a line. it does

not treat tile function that follows as a predicate blut simpiv executes the
O function and drops to the next line. Alternatively, ((setq a t) 'exit)

will result in the loop being exited with a value of 'exit returned.

(let ((result '(do ()(nil))))
(dollt (form (cdr s))

(cond ((Iistp (car form))

0. (set (

res ult
( appei d

resu It

A -((cond (,(car form)
At (reverse (cdr (reverse (cdr form))))

t' 47



,

(return (car (last (cdr form))))))))))
(t (setq result (append result (list form))))))

result))

44

%%

A.

4" 4

r" .4. .. 
'

: . EI . ,.J f l.'l P.,rllh . ,,.,hll iJ d H l~ l i l l ~



F. Discussion of Avenues of Approach and Obstacles*

Obstacles are natural and artificial terrain features that stop, impede, or divert movement of
troops, equipment, or weapons, and therefore are a key component in determining mobolity.
Analysis of obstacles is an important element of terrain analysis. Examples of natural obstacles
are rivers, streams, lakes, swamps, marshes, cliffs, steep slopes (greater than 45 degrees), dense
woods, jungles, deserts, mountains, unstable soil, e.g., peat, muck, and sand dunes. Man-made
obstacles include minefields, craters, antitank ditches, trenches, abatis, roadblocks, built-up
areas, flooded areas, nuclear; chemical /biological-contaminated areas, extensive rubble areas, and
blow-down areas.

Avenues of approach are unimpeded routes that can be traversed to the desired destination.
Wide, covered valleys, open-forested ridges, and ridge slopes below the crest of a ridge offer
features usable as avenues. Since these avenues are free of obstacles, they do not resist reasonable
cross-country movements. The surface configuration and materials are smooth and friendly to
movement in any direction, and consist of high density soils without major streams or waterways.
The ideal avenue of approach enables troops, weapons, and equipment to maneuver through an
area to the to the objective without delay. A regiment requires an approximately 5 to 10 km wide
valley or ridge for an avenue of approach.

S

*0

1,

*The following material was extracted from an unpublished paper by Prof Olin Mintzer

49

0%



-..

IV

-'Ib

-l 

r. v-w-


